Dispersive surface-response formalism to address nonlocality in extreme plasmonic field confinement

Author:

Babaze Antton123ORCID,Neuman Tomáš4ORCID,Esteban Ruben12ORCID,Aizpurua Javier123ORCID,Borisov Andrei G.4ORCID

Affiliation:

1. Materials Physics Center CSIC-UPV/EHU , Paseo Manuel de Lardizabal 5, 20018 , Donostia-San Sebastián , Spain

2. Donostia International Physics Center DIPC , Paseo Manuel de Lardizabal 4, 20018 , Donostia-San Sebastián , Spain

3. Department of Electricity and Electronics , FCT-ZTF, UPV-EHU , 48080 Bilbao , Spain

4. Institut des Sciences Moléculaires d’Orsay , UMR 8214 CNRS-Université Paris-Saclay, Bât. 520, 91405 Orsay Cedex , France

Abstract

Abstract The surface-response formalism (SRF), where quantum surface-response corrections are incorporated into the classical electromagnetic theory via the Feibelman parameters, serves to address quantum effects in the optical response of metallic nanostructures. So far, the Feibelman parameters have been typically obtained from many-body calculations performed in the long-wavelength approximation, which neglects the nonlocality of the optical response in the direction parallel to the metal–dielectric interface, thus preventing to address the optical response of systems with extreme field confinement. To improve this approach, we introduce a dispersive SRF based on a general Feibelman parameter d (ω, k ), which is a function of both the excitation frequency, ω, and the wavenumber parallel to the planar metal surface, k . An explicit comparison with time-dependent density functional theory (TDDFT) results shows that the dispersive SRF correctly describes the plasmonic response of planar and nonplanar systems featuring extreme field confinement. This work thus significantly extends the applicability range of the SRF, contributing to the development of computationally efficient semiclassical descriptions of light–matter interaction that capture quantum effects.

Funder

Ministerio de Ciencia e Innovación

Investissements d’Avenir LabEx PALM

Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3