Coherent light-emitting metasurfaces based on bound states in the continuum

Author:

Farazi Soheil1ORCID,Tadigadapa Srinivas1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering , 1848 Northeastern University , Boston , MA 02115 , USA

Abstract

Abstract An emergent need exists for solid state tunable coherent light emitters in the mid-infrared range for spectroscopy, sensing, and communication applications where current light sources are dominated by spontaneous emitters. This paper demonstrates a distinct class of coherent thermal emitters operating in the mid-infrared wavelength regime. The structure of the light source consists of a dielectric metasurface fabricated on a phononic substrate. In this study, we present the first implementation of off-Γ Friedrich–Wintgen bound states in the continuum at mid-infrared wavelengths suitable for developing the next generation of coherent light emitters. Numerical analysis of the emissivity spectrum reveals the interference of resonances leading to avoided crossings and the formation of Friedrich–Wintgen bound states in the radiation spectrum. Additionally, significant localized field enhancements are observed within the metasurface at operating wavelengths. The emissivity spectra measured by reflectivity and emission experiments exhibit temporally coherent emission peaks in the vicinity of the bound state in the continuum, the first such demonstration in the mid-infrared region for wavelengths longer than 7 µm. These results represent a new approach for significant advancement in realizing mid-infrared coherent light emitters with promising implications for future technologies.

Funder

National Science Foundation

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3