Microresonator frequency comb based high-speed transmission of intensity modulated direct detection data

Author:

Xing Peng1,Chen George Fengrong1,Gao Hongwei1ORCID,Chia Xavier1,Agarwal Anuradha M.23,Kimerling Lionel C.34,Tan Dawn T. H.15ORCID

Affiliation:

1. Photonics Devices and System Group , Singapore University of Technology and Design , 8 Somapah Rd , Singapore 487372 , Singapore

2. Microphotonics Center , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA

3. Materials Research Laboratory , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA

4. Department of Materials Science and Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , MA 02139 , USA

5. Institute of Microelectronics , A*STAR, 2 Fusionopolis Way , #08-02, Innovis Tower , Singapore 138634 , Singapore

Abstract

Abstract Globally, the long-haul transmission of ultra-high bandwidth data is enabled through coherent communications. Driven by the rapid pace of growth in interconnectivity over the last decade, long-haul data transmission has reached capacities on the order of tens to hundreds of terabits per second, over fiber reaches which may span thousands of kilometers. Data center communications operate in regimes featuring shorter reaches and higher cost sensitivity. While integrated microresonator frequency combs are poised to revolutionize light sources used for high-speed data transmission over fiber, recent progress has focused largely on coherent detection schemes. Furthermore, though state-of-the-art intensity modulators are advancing in speed, it has not been demonstrated in the literature if microresonator-based comb lines can accommodate higher intensity modulated direction data (IMDD) line rates in tandem with these advancements. In this manuscript, we demonstrate the use of microresonator frequency combs pumped with a single laser for the transmission of high-speed IMDD data. We demonstrate error-free transmission of 30 Gbs−1 per comb non-return-to-zero data over fiber lengths of 6 km, as well as bit error rates under the forward error correction limit for propagation through 20 km of optical fiber. 60 Gbs−1 and 42 Gbs−1 pulse modulation amplitude 4 (PAM4) data modulated on each frequency comb line is further quantified to have a bit error rate under the forward error correction limit for fiber reaches of up to 6 km and 20 km respectively. The results showcase CMOS-compatible microresonator frequency comb modulated using IMDD formats as a promising technology for high-speed transmission in the data center transceiver industry.

Funder

Ministry of Education Singapore

National Research Foundation Singapore

Agency for Science, Technology and Research

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3