Photoplasmonic assembly of dielectric-metal, Nd2O3-Gold soret nanointerfaces for dequenching the luminophore emission

Author:

Bhaskar Seemesh1ORCID,Das Pratyusha2ORCID,Moronshing Maku3ORCID,Rai Aayush1ORCID,Subramaniam Chandramouli3ORCID,Bhaktha Shivakiran B. N.2ORCID,Ramamurthy Sai Sathish4ORCID

Affiliation:

1. Department of Chemistry , STAR Laboratory, Sri Sathya Sai Institute of Higher Learning , Prasanthi Nilayam, Puttaparthi, 515134 , Anantapur , Andhra Pradesh , India

2. Department of Physics , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India

3. Department of Chemistry , Indian Institute of Technology Bombay , Powai , Mumbai 400076 , Maharashtra , India

4. Department of Chemistry , Sri Sathya Sai Institute of Higher Learning , Prasanthi Nilayam, Puttaparthi, 515134 , Anantapur , Andhra Pradesh , India

Abstract

Abstract A variety of materials such as low dimensional carbon substrates (1D, 2D, and 3D), nanoprisms, nanocubes, proteins, ceramics, and DNA to name a few, have been explored in surface plasmon-coupled emission (SPCE) platform. While these offer new physicochemical insights, investigations have been limited to silver as primary plasmonic material. Although, gold nanoparticles (AuNPs) exhibit robust performance, its intrinsic property to quench the emission from radiating dipoles (at distances < 5 nm) has impeded its utility. Despite the use of metal-dielectric resonances (with Au decorated SiO2 NPs) and sharp nanotips (from Au nanostars) for dequenching the emission, the enhancements obtained has been less than 200-fold in SPCE platform. To address these long-standing challenges, we demonstrate the utility of gold soret colloids (AuSCs) and photonic crystal-coupled emission (PCCE) platform. The soret nano-assemblies synthesized using adiabatic cooling technique presented integrated hotspots when taken with high refractive index Nd2O3 ‘Huygens sources’. The collective and coherent coupling between localized Mie and delocalized Bragg plasmons (of sorets), dielectric plasmons (of Nd2O3), highly confined and intense Bloch surface waves (of PCCE platform) aided in realization of dequenched, as well as amplified > 1500-fold enhancements at the photoplasmonic nanocavity interface, presenting new opportunities for multidisciplinary applications.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3