Electrically tunable conducting oxide metasurfaces for high power applications
Author:
Sokhoyan Ruzan1ORCID, Thureja Prachi1ORCID, Sisler Jared1ORCID, Grajower Meir1ORCID, Shayegan Komron1ORCID, Feigenbaum Eyal2ORCID, Elhadj Selim23ORCID, Atwater Harry A.1ORCID
Affiliation:
1. Thomas J. Watson Laboratories of Applied Physics , California Institute of Technology , Pasadena , CA 91125 , USA 2. National Ignition Facility and Photon Science , Lawrence Livermore National Laboratory , Livermore , CA 94550 , USA 3. Materials Engineering Division , Lawrence Livermore National Laboratory , Livermore , CA 94550 , USA
Abstract
Abstract
Active metasurfaces designed to operate at optical frequencies are flat optical elements that can dynamic, subwavelength-scale wavefront control of reflected or transmitted light. The practical and fundamental power-handling limits of active metasurfaces at high pulse energies and high average powers determine the potential applications for these emerging photonic components. Here, we investigate thermal performance limits of reflective gate-tunable conducting oxide metasurfaces illuminated with high power density laser beams, for both continuous wave (CW) and pulsed laser illumination. Our gate-tunable metasurfaces use indium tin oxide (ITO) as an active material, which undergoes an epsilon-near-zero (ENZ) transition under applied electrical bias. We experimentally show that under CW illumination, there is no significant change in the electrically tunable metasurface optical response for high irradiances ranging from 1.6 kW/cm2 to 9.1 kW/cm2 when the illuminating laser beam diameter is 7 μm. Even under an applied bias, when over 60% of the incoming light is absorbed in a 1 nm–thick charge accumulation layer within ITO, the local temperature rise in the metasurface is modest, supporting its robustness for high-power applications. Additionally, we theoretically show that in the ENZ regime, the metasurface reflectance can be increased by a factor of 10 by replacing the active ITO layer with cadmium oxide (CdO). Thus conducting oxide metasurfaces can tolerate the power densities needed in higher power applications, including free space optical communications, to light detection and ranging (LiDAR), as well as laser-based additive manufacturing.
Funder
Goddard Space Flight Center Air Force Office of Scientific Research Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development
Publisher
Walter de Gruyter GmbH
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Reference54 articles.
1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater., vol. 13, no. 2, pp. 139–150, 2014. https://doi.org/10.1038/nmat3839. 2. H.-H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and applications of metasurfaces,” Small Methods, vol. 1, no. 4, p. 1600064, 2017. https://doi.org/10.1002/smtd.201600064. 3. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, “Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging,” Science, vol. 352, no. 6290, p. 1190, 2016. https://doi.org/10.1126/science.aaf6644. 4. S. Wang, P. C. Wu, V. C. Su, et al.., “Broadband achromatic optical metasurface devices,” Nat. Commun., vol. 8, no. 1, p. 187, 2017. https://doi.org/10.1038/s41467-017-00166-7. 5. P. C. Wu, W. Y. Tsai, W. T. Chen, et al.., “Versatile polarization generation with an aluminum plasmonic metasurface,” Nano Lett., vol. 17, no. 1, pp. 445–452, 2017. https://doi.org/10.1021/acs.nanolett.6b04446.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|