Quantum-enhanced interferometer using Kerr squeezing

Author:

Kalinin Nikolay123,Dirmeier Thomas13,Sorokin Arseny A.2,Anashkina Elena A.24,Sánchez-Soto Luis L.15ORCID,Corney Joel F.6,Leuchs Gerd13,Andrianov Alexey V.2

Affiliation:

1. Max Planck Institute for the Science of Light , 91058 Erlangen , Germany

2. Nonlinear Dynamics and Optics Division , Institute of Applied Physics of the Russian Academy of Sciences , Nizhny Novgorod 603950 , Russia

3. Physik Department , Friedrich-Alexander-Universität Erlangen-Nürnberg , 91058 Erlangen , Germany

4. Advanced School of General and Applied Physics , Lobachevsky State University of Nizhny Novgorod , Nizhny Novgorod 603022 , Russia

5. Departamento de Óptica, Facultad de Física , Universidad Complutense , Madrid 28040 , Spain

6. School of Mathematics and Physics , University of Queensland , Brisbane , QLD 4072 , Australia

Abstract

Abstract One of the prime applications of squeezed light is enhancing the sensitivity of an interferometer below the quantum shot-noise limit, but so far, no such experimental demonstration was reported when using the optical Kerr effect. In prior setups involving Kerr-squeezed light, the role of the interferometer was merely to characterize the noise pattern. The lack of such a demonstration was largely due to the cumbersome tilting of the squeezed ellipse in phase space. Here, we present the first experimental observation of phase-sensitivity enhancement in an interferometer using Kerr squeezing.

Funder

Ministerio de Ciencia e Innovación

Foundation for the Advancement of Theoretical Physics and Mathematics

Russian Foundation for Basic Research

Ministry of Science and Higher Education of the Russian Federation

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference57 articles.

1. V. B. Braginskiy, “Classical and quantum restrictions on the detection of weak disturbances of a macroscopic oscillator,” Zh. Eksp. Teor. Fiz. (JETP), vol. 53, pp. 1434–1441, 1967.

2. C. M. Caves, “Quantum-mechanical radiation-pressure fluctuations in an interferometer,” Phys. Rev. Lett., vol. 45, pp. 75–79, 1980. https://doi.org/10.1103/PhysRevLett.45.75.

3. R. Loudon, “Quantum limit on the Michelson interferometer used for gravitational-wave detection,” Phys. Rev. Lett., vol. 47, pp. 815–818, 1981. https://doi.org/10.1103/PhysRevLett.47.815.

4. Note, that ‘SQL’ sometimes refers to just the shot-noise limit (SNL). Here, we use the definition for SQL given by Caves in 1980 for a laser interferometer, where he refers to increasing the laser power and thus lowering the shot noise, until an optimum is reached and any further power increase will deteriorate the sensitivity because of the increasing light-pressure noise. At this power of highest sensitivity, the SQL is reached.

5. C. M. Caves, “Quantum-mechanical noise in an interferometer,” Phys. Rev. D, vol. 23, pp. 1693–1708, 1981. https://doi.org/10.1103/PhysRevD.23.1693.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3