Affiliation:
1. Department of Physics , ITMO University , Saint Petersburg , Russia
Abstract
Abstract
Optical heating of resonant nanostructures is one of the key issues in modern nanophotonics, being either harmful or desirable effect depending on the applications. Despite a linear regime of light-to-heat conversion being well-studied both for metal and semiconductor resonant systems is generalized as a critical coupling condition, the clear strategy to optimize optical heating upon high-intensity light irradiation is still missing. This work proposes a simple analytical model for such a problem, taking into account material properties changes caused by the heating. It allows us to derive a new general critical coupling condition for the nonlinear case, requiring a counterintuitive initial spectral mismatch between the pumping light frequency and the resonant one. Based on the suggested strategy, we develop an optimized design for efficient nonlinear optical heating, which employs a cylindrical nanoparticle supporting the quasi bound state in the continuum mode (quasi-BIC or so-called ‘super-cavity mode’) excited by the incident azimuthal vector beam. Our approach provides a background for various nonlinear experiments related to optical heating and bistability, where self-action of the intense laser beam can change resonant properties of the irradiated nanostructure.
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献