Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy

Author:

Dong Lu Ming1,Ye Cui2,Zheng Lin Lin1,Gao Zhong Feng1,Xia Fan3

Affiliation:

1. Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Feixian Campus, Linyi University, Linyi, Shandong 276005, P.R. China

2. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China

3. Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P.R. China

Abstract

AbstractTransition metal carbides and nitrides (MXenes), which comprise a rapidly growing family of two-dimensional materials, have attracted extensive attention of the scientific community, owing to its unique characteristics of high specific surface area, remarkable biocompatibility, and versatile applications. Exploring different methods to tune the size and morphology of MXenes plays a critical role in their practical applications. In recent years, MXenes have been demonstrated as promising nanomaterials for cancer therapy with substantial performances, which not only are helpful to clarify the mechanism between properties and morphologies but also bridge the gap between MXene nanotechnology and forward-looking applications. In this review, recent progress on the preparation and properties of MXenes are summarized. Further applications in cancer therapy are also discussed. Finally, the current opportunities and future perspective of MXenes are described.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3