Topologically driven Rabi-oscillating interference dislocation

Author:

Rahmani Amir1ORCID,Colas David2,Voronova Nina34,Jamshidi-Ghaleh Kazem1,Dominici Lorenzo5ORCID,Laussy Fabrice P.46

Affiliation:

1. Department of Physics , Azarbaijan Shahid Madani University , Tabriz , Iran

2. Aix Marseille Université, CNRS, Centrale Marseille , LMA UMR 7031 Marseille , France

3. National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) , 115409 Moscow , Russia

4. Russian Quantum Center , Skolkovo Innovation City, 121205 Moscow , Russia

5. CNR NANOTEC, Istituto di Nanotecnologia , Via Monteroni, 73100 Lecce , Italy

6. Faculty of Science and Engineering , University of Wolverhampton , Wulfruna Street, WV1 1LY Wolverhampton , UK

Abstract

Abstract Quantum vortices are the quantized version of classical vortices. Their center is a phase singularity or vortex core around which the flow of particles as a whole circulates and is typical in superfluids, condensates and optical fields. However, the exploration of the motion of the phase singularities in coherently-coupled systems is still underway. We theoretically analyze the propagation of an interference dislocation in the regime of strong coupling between light and matter, with strong mass imbalance, corresponding to the case of microcavity exciton–polaritons. To this end, we utilize combinations of vortex and tightly focused Gaussian beams, which are introduced through resonant pulsed pumping. We show that a dislocation originates from self-interference fringes, due to the non-parabolic dispersion of polaritons combined with moving Rabi-oscillating vortices. The morphology of singularities is analyzed in the Poincaré space for the pseudospin associated to the polariton states. The resulting beam carries orbital angular momentum with decaying oscillations due to the loss of spatial overlap between the normal modes of the polariton system.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3