All-optical modulator with photonic topological insulator made of metallic quantum wells

Author:

Wang Haiteng123,Niu Junru123,Chen Qiaolu123,Zhao Sihan4ORCID,Shao Hua123,Yang Yihao123,Chen Hongsheng123ORCID,Li Shilong123,Qian Haoliang123ORCID

Affiliation:

1. Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering , 12377 Zhejiang University , Hangzhou 310027 , China

2. ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang , 12377 Zhejiang University , Hangzhou 310027 , China

3. International Joint Innovation Center, ZJU-UIUC Institute , 12377 Zhejiang University , Haining 314400 , China

4. Interdisciplinary Center for Quantum Information, State Key Laboratory of Silicon and Advanced Semiconductor Materials, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics , 12377 Zhejiang University , Hangzhou 310058 , China

Abstract

Abstract All-optical modulators hold significant prospects for future information processing technologies for they are able to process optical signals without the electro-optical convertor which limits the achievable modulation bandwidth. However, owing to the hardly-controlled optical backscattering in the commonly-used device geometries and the weak optical nonlinearities of the conventional material systems, constructing an all-optical modulator with a large bandwidth and a deep modulation depth in an integration manner is still challenging. Here, we propose an approach to achieving an on-chip ultrafast all-optical modulator with ultra-high modulation efficiency and a small footprint by using photonic topological insulators (PTIs) made of metallic quantum wells (MQWs). Since PTIs have attracted significant attention because of their unidirectional propagating edge states, which mitigate optical backscattering caused by structural imperfections or defects. Meanwhile, MQWs have shown a large Kerr nonlinearity, facilitating the development of minimally sized nonlinear optical devices including all-optical modulators. The proposed photonic topological modulator shows a remarkable modulation depth of 15 dB with a substantial modulation bandwidth above THz in a tiny footprint of only 4 × 10 µm2, which manifests itself as one of the most compact optical modulators compared with the reported ones possessing a bandwidth above 100 GHz. Such a high-performance optical modulator could enable new functionalities in future optical communication and information processing systems.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New frontiers in nonlinear nanophotonics;Nanophotonics;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3