Trapping of resonant metallic nanoparticles with engineered vectorial optical field

Author:

Rui Guanghao1,Zhan Qiwen1

Affiliation:

1. 1Electro-Optics Program, University of Dayton, 300 College Park, Dayton, OH 45469, USA

Abstract

AbstractOptical trapping and manipulation using focused laser beams has emerged as a powerful tool in the biological and physical sciences. However, scaling this technique to metallic nanoparticles remains challenging due to the strong scattering force and optical heating effect. In this work, we propose a novel strategy to optically trap metallic nanoparticles even under the resonant condition using engineered optical field. The distribution of the optical forces can be tailored through optimizing the spatial distribution of a vectorial optical illumination to favour the stable trapping of a variety of metallic nanoparticles under various conditions. It is shown that this optical tweezers has the ability of generating negative scattering force and supporting stable three-dimensional trapping for gold nanoparticles at resonance while avoiding trap destabilization due to optical overheating. The technique presented in this work offers a versatile solution for trapping metallic nanoparticles and may open up new avenues for optical manipulation.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3