A large scale photonic matrix processor enabled by charge accumulation

Author:

Brückerhoff-Plückelmann Frank12,Bente Ivonne32ORCID,Wendland Daniel32,Feldmann Johannes4,Wright C. David5,Bhaskaran Harish6,Pernice Wolfram2ORCID

Affiliation:

1. Department of Physics, University of Münster , CeNTech, Heisenberg Str. 11, 48155 Muenster , Germany

2. University of Münster, Department of Physics, CeNTech , Heisenbergstraße 11 , Münster , Germany

3. Department of Physics, University of Münster , CeNTech, Heisenberg 11, 48149 Muenster , Germany

4. Salience Labs Ltd , 46 Woodstock Rd , Oxford OX2 6HT , UK

5. University of Exeter, Faculty of Environment, Science and Economy , North Park Road , Exeter , UK

6. University of Oxford , Department of Materials , Parks Road , Oxford OX1 3PH , UK

Abstract

Abstract Integrated neuromorphic photonic circuits aim to power complex artificial neural networks (ANNs) in an energy and time efficient way by exploiting the large bandwidth and the low loss of photonic structures. However, scaling photonic circuits to match the requirements of modern ANNs still remains challenging. In this perspective, we give an overview over the usual sizes of matrices processed in ANNs and compare them with the capability of existing photonic matrix processors. To address shortcomings of existing architectures, we propose a time multiplexed matrix processing scheme which virtually increases the size of a physical photonic crossbar array without requiring any additional electrical post-processing. We investigate the underlying process of time multiplexed incoherent optical accumulation and achieve accumulation accuracy of 98.9% with 1 ns pulses. Assuming state of the art active components and a reasonable crossbar array size, this processor architecture would enable matrix vector multiplications with 16,000 × 64 matrices all optically on an estimated area of 51.2 mm2, while performing more than 110 trillion multiply and accumulate operations per second.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Silicon Nitride Integrated Photonics from Visible to Mid‐Infrared Spectra;Laser & Photonics Reviews;2024-07-27

2. Lithium-niobate photonic integrated circuits for GHz, sub-picojoule/bit optical image processing;Real-time Processing of Image, Depth, and Video Information 2024;2024-06-20

3. Physics-informed machine learning for programmable photonic circuits;Machine Learning in Photonics;2024-06-18

4. A Low-Dissipation and Scalable GEMM Accelerator with Silicon Nitride Photonics;2024 25th International Symposium on Quality Electronic Design (ISQED);2024-04-03

5. Photonic neural networks and optics-informed deep learning fundamentals;APL Photonics;2024-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3