Multiple symmetry protected BIC lines in two dimensional synthetic parameter space

Author:

Zhang Fengyuan1,Chu Qiongqiong1ORCID,Wang Qiang1,Zhu Shining1,Liu Hui1ORCID

Affiliation:

1. National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing , Jiangsu 210093 , China

Abstract

Abstract Bound states in the continuum (BICs) have attracted significant interest in recent years due to their unique optical properties, such as infinite quality factor and wave localization. In order to improve the optical performance of BICs based devices, more degrees of freedom are required to tune BICs in high-dimension parameter space for practical applications. To effectively tune more BICs, we form a 2D synthetic parameter space based on a nanohole metasurface array. Multiple symmetry protected BIC modes with high Q factors can be achieved at high-order symmetry point. Through manipulating asymmetry parameters, BIC lines formed by a series of BIC modes can be found in the 2D synthetic parameter space. Moreover, the electric field distributions are investigated to demonstrate the generation and evolution of BICs. By measuring the absorption spectra, the tuning of multiple BICs with synthetic asymmetry parameters is experimentally explored, which agrees well with theoretical results. Therefore, our design can provide new insight for a variety of on-chip applications, such as nonlinear devices, integrated nanolasing array, and high-resolution sensors for infrared molecular detection.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3