Three-dimensionally printable hollow silica nanoparticles for subambient passive cooling

Author:

Park Su-Jin1ORCID,Seo Seok-Beom1ORCID,Shim Jiyun2,Hong Seok Jin2,Kang Gumin3,Ko Hyungduk3,Jeong Sunho2ORCID,Kim Sun-Kyung1ORCID

Affiliation:

1. Department of Applied Physics , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea

2. Department of Advanced Material Engineering for Information & Electronics , Kyung Hee University , Yongin-si , Gyeonggi-do 17104 , Republic of Korea

3. Nanophotonics Research Center , Korea Institute of Science and Technology , Seoul 02792 , Republic of Korea

Abstract

Abstract Solar reflectance and thermal emissivity are critical benchmarks for evaluating the effectiveness of passive cooling strategies. The integration of three-dimensional (3D) printing techniques with passive cooling materials enables local thermal management of multifaceted objects, offering opportunities for unexplored energy-saving applications. For example, conformal printing of cooling materials can mitigate solar absorption caused by the top metal electrodes in solar cells, thereby improving their efficiency and lifetime. In this study, we report the synthesis of 3D printable hollow silica nanoparticles (HSNPs) designed to induce subambient cooling performance under daylight conditions. HSNPs with diameters of 400–700 nm and silica shell thicknesses of approximately 100 nm were synthesized using an in-situ sol–gel emulsion method. Subsequently, these HSNPs were formulated into printable pastes by carefully selecting the mixture concentration and molecular weight of polyvinylpyrrolidone (PVP). The PVP-linked HSNPs exhibited a solar (0.3–2.5 μm) reflectivity of 0.98 and a thermal (8–13 μm) emissivity of 0.93. In contrast to a single silica nanoparticle (NP), the scattering analysis of a single HSNP revealed a distinctive scattering distribution characterized by amplified backward scattering and suppressed forward scattering. In outdoor daytime experiments, the HSNP-printed sample led to the subambient cooling of a dielectric substrate, surpassing the cooling performance of reference materials such as silica NPs, silver pastes, and commercial white plastics and paints.

Funder

KIST institutional research program

National Research Foundation of Korea

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3