Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluidics

Author:

Zhou Jianyang1,Tao Feng1,Zhu Jinfeng1,Lin Shaowei2,Wang Zhengying1,Wang Xiang3,Ou Jun-Yu4,Li Yuan5,Liu Qing Huo6

Affiliation:

1. School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China

2. The First Affiliated Hospital of Xiamen University, Xiamen 361003, China

3. State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

4. Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ, UK

5. Central Laboratory of Yongchuan Hospital, Chongqing Medical University, Yongchuan 402160, China

6. Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

Abstract

AbstractPlasmonic sensing has a great potential in the portable detection of human tumor markers, among which the carcinoembryonic antigen (CEA) is one of the most widely used in clinical medicine. Traditional plasmonic and non-plasmonic methods for CEA biosensing are still not suitable for the fast developing era of Internet of things. In this study, we build up a cost-effective plasmonic immunochip platform for rapid portable detection of CEA by combining soft nanoimprint lithography, microfluidics, antibody functionalization, and mobile fiber spectrometry. The plasmonic gold nanocave array enables stable surface functionality, high sensitivity, and simple reflective measuring configuration in the visible range. The rapid quantitative CEA sensing is implemented by a label-free scheme, and the detection capability for the concentration of less than 5 ng/ml is achieved in clinical experiments, which is much lower than the CEA cancer diagnosis threshold of 20 ng/ml and absolutely sufficient for medical applications. Clinical tests of the chip on detecting human serums demonstrate good agreement with conventional medical examinations and great advantages on simultaneous multichannel detections for high-throughput and multi-marker biosensing. Our platform provides promising opportunities on low-cost and compact medical devices and systems with rapid and sensitive tumor detection for point-of-care diagnosis and mobile healthcare.

Funder

Fujian Provincial Department of Science and Technology

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3