Affiliation:
1. Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC) , 16722 Universidad Autónoma de Madrid , E-28049 Madrid , Spain
Abstract
Abstract
Thanks to their exceptional spatial, spectral and temporal resolution, highly-coherent free-electron beams have emerged as powerful probes for material excitations, enabling their characterization even in the quantum regime. Here, we investigate strong light–matter coupling through monochromatic and modulated electron wavepackets. In particular, we consider an archetypal target, comprising a nanophotonic cavity next to a single two-level emitter. We propose a model Hamiltonian describing the coherent interaction between the passing electron beam and the hybrid photonic–excitonic target, which is constructed using macroscopic quantum electrodynamics and fully parameterized in terms of the electromagnetic dyadic Green’s function. Using this framework, we first describe electron-energy-loss and cathodoluminescence spectroscopies, and photon-induced near-field electron emission microscopy. Finally, we show the power of modulated electrons beams as quantum tools for the manipulation of polaritonic targets presenting a complex energy landscape of excitations.
Funder
Comunidad de Madrid
Ministerio de Ciencia e Innovación
HORIZON EUROPE Digital, Industry and Space
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献