Experimental demonstration of weak chirality enhancement by hybrid perovskite nanocrystals using photonic spin Hall effect

Author:

Lai Zheng1,Lin Shuai1,Shi Youzhi1,Li Maoxin1,Liu Guangyou1,Tian Bingbing1,Chen Yu1ORCID,Zhou Xinxing2ORCID

Affiliation:

1. International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology , Institute of Microscale Optoelectronics, Shenzhen University , 518060 , Shenzhen , P. R. China

2. Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Synergetic Innovation Center for Quantum Effects and Applications, School of Physics and Electronics , Hunan Normal University , 410081 , Changsha , P. R. China

Abstract

Abstract Chiral perovskites have attracted considerable attention as excellent spin-emitting materials for applications in spintronics, quantum optics, and biological. Especially in drug development of biological, weak chirality molecules are frequently selected to reduce the side effects of toxics, and there is a common defect for accurately detecting the weak chirality with common methods at room temperature. In this study, formamidine lead bromide perovskite nanocrystals (FAPbBr3 NCs) were coated with chiral ligands, whose chirality was too weak to be observed in the visible region at room temperature. Thus, by characterizing the transverse shift of photonic spin Hall effect (SHE), the accurate discrimination of weak chirality in the visible region was achieved successfully. By measuring the shift value and light spot splitting of photonic SHE at the same concentration, NEA-coated FAPbBr3 NCs can effectively enhance the chirality of naphthalene ethylamine (NEA) ligands when under the mutually reinforcement of chiral molecular and inorganic parts. In addition, we furtherly clearly distinguished the tiny chiral distinction of NEA-coated FAPbBr3 NCs with different particle sizes, which revealed that the chirality decreases with the increase of particle size. These findings could provide effective solutions for the detection and application of weak chirality in hybrid perovskite nanocrystals in universal environment.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3