On the excitation and radiative decay rates of plasmonic nanoantennas

Author:

Bedingfield Kalun1ORCID,Demetriadou Angela1

Affiliation:

1. School of Physics and Astronomy , University of Birmingham , Birmingham , UK

Abstract

Abstract Plasmonic nanoantennas have the ability to confine and enhance incident electromagnetic fields into very sub-wavelength volumes, while at the same time efficiently radiating energy to the far-field. These properties have allowed plasmonic nanoantennas to be extensively used for exciting quantum emitters—such as molecules and quantum dots—and also for the extraction of photons from them for measurements in the far-field. Due to electromagnetic reciprocity, it is expected that plasmonic nanoantennas radiate energy as efficiently as an external source can couple energy to them. In this paper, we adopt a multipole expansion (Mie theory) and numerical simulations to show that although reciprocity holds, certain plasmonic antennas radiate energy much more efficiently than one can couple energy into them. This work paves the way towards designing plasmonic antennas with specific properties for applications where the near-to-far-field relationship is of high significance, such as: surface-enhanced Raman spectroscopy, strong coupling at room temperature, and the engineering of quantum states in nanoplasmonic devices.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3