Fundamentals and applications of SERS-based bioanalytical sensing

Author:

Kahraman Mehmet1,Mullen Emma R.23,Korkmaz Aysun1,Wachsmann-Hogiu Sebastian245

Affiliation:

1. Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey

2. Intellectual Ventures/Global Good, Bellevue, WA, USA

3. University of Washington, Seattle, WA, USA

4. University of California, Davis, CA, USA

5. McGill University, Montreal, QC, Canada

Abstract

AbstractPlasmonics is an emerging field that examines the interaction between light and metallic nanostructures at the metal-dielectric interface. Surface-enhanced Raman scattering (SERS) is a powerful analytical technique that uses plasmonics to obtain detailed chemical information of molecules or molecular assemblies adsorbed or attached to nanostructured metallic surfaces. For bioanalytical applications, these surfaces are engineered to optimize for high enhancement factors and molecular specificity. In this review we focus on the fabrication of SERS substrates and their use for bioanalytical applications. We review the fundamental mechanisms of SERS and parameters governing SERS enhancement. We also discuss developments in the field of novel SERS substrates. This includes the use of different materials, sizes, shapes, and architectures to achieve high sensitivity and specificity as well as tunability or flexibility. Different fundamental approaches are discussed, such as label-free and functional assays. In addition, we highlight recent relevant advances for bioanalytical SERS applied to small molecules, proteins, DNA, and biologically relevant nanoparticles. Subsequently, we discuss the importance of data analysis and signal detection schemes to achieve smaller instruments with low cost for SERS-based point-of-care technology developments. Finally, we review the main advantages and challenges of SERS-based biosensing and provide a brief outlook.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Reference256 articles.

Cited by 166 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3