Formation of laser-induced periodic surface nanometric concentric ring structures on silicon surfaces through single-spot irradiation with orthogonally polarized femtosecond laser double-pulse sequences

Author:

Liu Wei1,Hu Jie1ORCID,Jiang Lan1ORCID,Huang Ji1,Lu Jiangang2,Yin Jiangang2,Qiu Zhaoling1,Liu Hailin1,Li Chen1,Wang Suocheng1,Wang Shaojun1

Affiliation:

1. Laser Micro/Nano Fabrication Laboratory , School of Mechanical Engineering, Beijing Institute of Technology , Beijing , 100081 , P. R. China

2. Han’s Laser Technology Centre , Shennan Ave No. 9988 , Nanshan District , Shenzhen City , Guangdong Province , 518057 , P. R. China

Abstract

Abstract In this study, we report the formation of laser-induced periodic surface nanometric concentric ring structures on silicon surfaces through single-spot irradiation with orthogonally polarized femtosecond laser double-pulse sequences (OP pulses). The period of the ring structures is marginally smaller than the irradiated laser’s wavelength, which indicates that the structures are a type of low-spatial-frequency laser-induced periodic surface structures. Regular nanometric concentric ring structures can be formed when the time delay between two subpulses is approximately 1 ps (roughly from 500 fs to 1.5 ps) and the number of laser bursts is approximately 4. The formation mechanism of the concentric ring structures is attributed to the surface wave (i.e., cylindrical wave) stimulated by OP pulses through single-spot irradiation is radially distributed. Large area of concentric ring structures eliminating anisotropy in the generation of structural colors was shown in this paper.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3