High-performance silicon polarization switch based on a Mach–Zehnder interferometer integrated with polarization-dependent mode converters

Author:

Zhao Weike1,Liu Ruoran1,Peng Yingying1,Yi Xiaolin1,Chen Haitao1ORCID,Dai Daoxin12ORCID

Affiliation:

1. State Key Laboratory for Modern Optical Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics , Zhejiang University , Zijingang Campus , Hangzhou 310058 , China

2. Ningbo Research Institute , Zhejiang University , Ningbo 315100 , China

Abstract

Abstract As the key element for optical systems, polarization controllers with versatile functionalities are highly desired. Here, a CMOS-compatible polarization switch is proposed and realized by using a Mach–Zehnder interferometer integrated with two polarization-dependent mode converters (PDMCs) at the input/output ends. The PDMCs, which utilize the mode hybridness and adiabatic mode evolution in a silicon-on-insulator (SOI) ridge waveguide taper, provide a low-loss adiabatic transmission for the launched TE0 mode as well as efficient mode conversion from the launched TM0 mode to the TE1 mode. For the MZI structure, there are two 1 × 2 dual-mode 3-dB power splitters based on a triple-core adiabatic taper, and two thermally-tunable phase-shifters embedded in the arms. The polarization state and the polarization extinction ratio (PER) of the transmitted light can be dynamically tuned by introducing some phase difference between the MZI arms electrically. The fabricated device has an excess loss of ∼0.6 dB for the TE0 and TM0 modes. When the switch is off, the TE0 and TM0 modes go through the device without exchange. In contrast, when the switch is on, the TE0–TM0 conversion occurs and the measured PER is about 20 dB.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3