Photoluminescence lifetime engineering via organic resonant films with molecular aggregates

Author:

Choi Kyu-Ri1,Li Shilong2,Park Dong Hee1,Joo Bin Chan1,Lee Hojun1,Kang Evan S. H.1,Nic Chormaic Síle2,Wu Jeong Weon3ORCID,D’Aléo Anthony4,Lee Yeon Ui1ORCID

Affiliation:

1. Chungbuk National University , Cheongju , Republic of Korea

2. Okinawa Institure of Science and Technology Graduate University , Onna , Japan

3. Ewha Womans University , Seoul , Republic of Korea

4. Université de Strasbourg , Strasbourg , France

Abstract

Abstract Manipulating the spontaneous emission rate of fluorophores is vital in creating bright incoherent illumination for optical sensing and imaging, as well as fast single-photon sources for quantum technology applications. This can be done via increasing the Purcell effect by using non-monolithic optical nanocavities; however, achieving the desired performance is challenging due to difficulties in fabrication, precise positioning, and frequency tuning of cavity-emitter coupling. Here, we demonstrate a simple approach to achieve a wavelength-dependent photoluminescence (PL) lifetime modification using monolithic organic molecular aggregates films. These single monolithic organic films are designed to have a Lorentzian dispersion, including epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) spectral regions with increased and decreased photonic density of states, respectively. This dispersion leads to enhanced and depressed PL decay rates at different wavelengths. Both time-resolved photoluminescence (TRPL) and fluorescence lifetime imaging microscopy (FLIM) measurements are implemented to verify the validity of this approach. This approach offers a promising way to design dual-functional optical sources for a variety of applications, including bioimaging, sensing, data communications, and quantum photonics applications.

Funder

Institute for Information and Communications Technology Promotion

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Ministry of Education

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3