Tailoring photoluminescence of WS2-microcavity coupling devices in broad visible range

Author:

Zhao Le-Yi1,Wang Hai2ORCID,Liu Tian-Yu2,Li Fang-Fei1,Zhou Qiang1,Wang Hai-Yu2

Affiliation:

1. Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials , College of Physics, Jilin University , Changchun 130012 , China

2. State Key Laboratory of Integrated Optoelectronics , College of Electronic Science and Engineering, Jilin University , 2699 Qianjin Street , Changchun 130012 , China

Abstract

Abstract Most of the previous TMDC-photon coupling devices were mainly based on A exciton due to its high oscillator strength and large exciton binding energy. Less effort has been focused on the modulation of the emission of B exciton and Rydberg states in TMDCs, especially in monolayer WS2. Here, we demonstrate that the photoluminescence (PL) emission of WS2-microcavity coupling devices can be tailored in a broad visible wavelength range (490 nm–720 nm). In contrast to the intrinsic PL emission of monolayer WS2, 25-fold enhanced B exciton emission and significant PL emission from the 2s Rydberg state can be observed. From the transient absorption (TA) measurements, the strongly coupled hybrid states based on B exciton can be remarkably fingerprinted. Furthermore, the strongly enhanced PL emission from the coupled B exciton has been demonstrated due to the strongly increased lower polariton (LP) state population and the internal conversion pathway being blocked in the strong coupling regime. Besides, the remarkable PL emission from the 2s Rydberg state is also revealed and confirmed by the additional ground state bleaching signal in TA spectra. These physical mechanisms about tailoring the PL emission in low dimensional TMDCs can provide significant references for constructing highly efficient optoelectronic devices.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3