Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system

Author:

Xiang Jin1,Xu Yi2,Chen Jing-Dong3,Lan Sheng1

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China

2. Department of Electronic Engineering, College of Information Science and Technology, Jinan University, 510632 Guangzhou, China

3. College of Physics and Information Engineering, Minnan Normal University, Zhangzhou, 363000, China

Abstract

AbstractBound states in the continuum (BIC) are considered as an effective means to dramatically elongate the trapping time of light. However, light-matter interaction depends not only on the life-time of an optical mode, but also on its mode volume. Therefore, increasing the life-time of an optical mode and minimizing the mode volume simultaneously, utilizing the BIC resembles a promising way for enhancing light-matter interaction. Herein, we have proposed a novel hybrid plasmonic-dielectric structure to manipulate the mode volume of BIC. For the Friedrich-Wintgen BIC, the electric field is strongly confined in the dielectric nanoparticle, leading to the considerable field enhancement compared with the single dielectric nanoparticle case. In contrast, strong localization of electric field can be achieved along the surface normal direction for the symmetry-protected BIC, leading to one order of magnitude reduction of mode volume in one unit cell compared with the conventional symmetry-protected BIC of all-dielectric structure. The proposed hybrid photonic system could provide an ideal flat platform for advanced manipulation of light-matter interaction.

Funder

National Key Research and Development Program of China

National Nature and Science Foundation of China

Natural Science Foundation of Guangdong Province, China

Science and Technology Planning Project of Guangdong Province, China

Pearl River Nova Program of Guangzhou

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3