Lasing properties and carrier dynamics of CsPbBr3 perovskite nanocrystal vertical-cavity surface-emitting laser

Author:

He Yawen1,Su Zhan1,Cao Fuyi1,Cao Zhenghao1,Liu Yuejun1,Zhao Chunhu1,Weng Guoen1,Hu Xiaobo1,Tao Jiahua1,Chu Junhao1,Akiyama Hidefumi2,Chen Shaoqiang12ORCID

Affiliation:

1. State Key Laboratory of Precision Spectroscopy, Department of Electronic Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , China

2. Institute for Solid State Physics, The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8581 , Japan

Abstract

Abstract All-inorganic lead halide perovskite nanocrystals (NCs) have been widely investigated as highly promising optical gain materials due to their compelling electrical and optical properties. Although many efforts have been carried out, a deep understanding of perovskite NC vertical-cavity surface-emitting lasers (VCSELs) is elusive, which is very important in the development of photoelectronic integrated circuits. Along these lines, in this work, a low lasing threshold (22 μJ/cm2) single-mode VCSEL consisting of CsPbBr3 NCs film and two distributed Bragg reflectors was successfully constructed. The CsPbBr3 NCs were synthesized by using the supersaturated recrystallization method. Interestingly, benefiting from the strong coupling between the active layer and the optical field in the cavity, a single-mode lasing at 527 nm was demonstrated under femtosecond optical pumping. The carrier dynamics of the perovskite NC VCSEL was also thoroughly investigated by performing pump intensity-dependent time-resolved photoluminescence measurements. The typical gain-switching phenomenon was observed with an ultrafast decay of the laser pulse of ∼10 ps. Our work provides valuable insights for the implementation of the CsPbBr3 NC VCSEL for various optoelectronic applications.

Funder

Shanghai Committee of Science and Technology

National Natural Science Foundation of China

Japan Society for the Promotion of Science

the National Key R&D Program of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3