Digital laser micro- and nanoprinting

Author:

Li Qingfeng1,Grojo David1,Alloncle Anne-Patricia1,Chichkov Boris2,Delaporte Philippe1

Affiliation:

1. Aix-Marseille University, CNRS, LP3 Laboratory, 13009 Marseille, France

2. Leibniz Universität Hannover, Institut für Quantenoptik, Welfengarten 1, 30167 Hannover, Germany

Abstract

AbstractLaser direct writing is a well-established ablation technology for high-resolution patterning of surfaces, and since the development of additive manufacturing, laser processes have also appeared very attractive for the digital fabrication of three-dimensional (3D) objects at the macro-scale, from few millimeters to meters. On the other hand, laser-induced forward transfer (LIFT) has demonstrated its ability to print a wide range of materials and to build functional micro-devices. For many years, the minimum size of laser-printed pixels was few tens of micrometers and is usually organized in two dimensions. Recently, new approaches have been investigated, and the potential of LIFT technology for printing 2D and 3D sub-micrometer structures has become real. After a brief description of the LIFT process, this review presents the pros and cons of the different digital laser printing technologies in the aim of the additive nanomanufacturing application. The transfer of micro- and nano-dots in the liquid phase from a solid donor film appears to be the most promising approach to reach the goal of 3D nanofabrication, and the latest achievements obtained with this method are presented and discussed.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3