Affiliation:
1. ETH Zurich, Department of Physics , Institute for Quantum Electronics, Optical Nanomaterial Group , Zurich , Switzerland
Abstract
Abstract
Lithium niobate on insulator is being established as a versatile platform for a new generation of photonic integrated devices. Extensive progress has been made in recent years to improve the fabrication of integrated optical circuits from a research platform towards wafer-scale fabrication in commercial foundries, and optical losses have reached remarkably low values approaching material limits. In this context, argon etching of lithium niobate waveguides has been shown to provide the best optical quality, yet the process is still challenging to optimise due to its physical nature. Namely, the micro-masking effects introduced by the material redeposition and a close to one etch mask selectivity for deep etches. We present a workflow to identify the parameter set offering the best etching results independent of the plasma system being used. We show how to reach the redeposition-free regime and propose three methods to achieve redeposition-free lithium niobate etching with good quality sidewalls without need of wet chemistry for cleaning.
Funder
European Space Agency
Schweizerischer Nationalfonds zur Foerderung der Wissenschaftlichen Forschung
H2020 European Research Council
Subject
Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献