Two-dimensional heterostructure quasi-BIC photonic crystal surface-emitting laser with low divergence

Author:

Tang Renjie123,Shi Yilin23,Shang Hongpeng23,Wu Jianghong23,Ma Hui1,Wei Maoliang1,Luo Ye23,Chen Zequn23,Ye Yuting23,Jian Jialing23,Zheng Xiaorui23,Lin Hongtao1,Li Lan23ORCID

Affiliation:

1. State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering , Zhejiang University , Hangzhou 310027 , China

2. Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering , Westlake University , Hangzhou 310030 , China

3. Institute of Advanced Technology, Westlake Institute for Advanced Study , Hangzhou 310024 , China

Abstract

Abstract High beam quality, large-area output, and small footprint are significant pursuing goals for vertical-cavity surface-emitting lasers (VCSELs), which impose strict requirements on tight light confinements with minimized radiation losses. To achieve this, bound states in the continuum (BICs) have been demonstrated as an effective way of trapping light. Here, we combine BICs and photonic bandgaps to realize a quasi-BIC single-mode photonic crystal (PhC) laser on a colloidal quantum dots (CQDs)/silicon oxide (SiO2) hybrid integrated platform. The PhC cavity is a defect-free hexagonal heterostructure with three regions, and the thin CQDs film is embedded within the SiO2 nanopillar planar array as both an optical gain material and a backbone for the PhC. The mode gaps between different regions provide the lateral confinement while the quasi-BICs near the Γ-point generate the small-divergence vertical radiation coupling, resulting in a well-defined emission concentrating within ±1.85° of the normal surface direction and an optical pumping energy density threshold of 216.75 μJ/cm2. Our results demonstrate the design flexibility and versatility of the quasi-BIC laser even with a low contrast of a refractive index between the PhC slab and the substrate, which has potential applications in cavity quantum electrodynamics, nonlinear optics, and integrated photonics.

Funder

Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3