Molding light with metasurfaces: from far-field to near-field interactions

Author:

Hassani Gangaraj Seyyed Ali1,Monticone Francesco2

Affiliation:

1. School of Electrical and Computer Engineering, Cornell University, Ithaca, USA

2. School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, USA

Abstract

AbstractThe field of metasurfaces is revolutionizing the way we control and manipulate light and electromagnetic fields based on engineered ultrathin structures. In this review article, we discuss the theory, modeling, and applications of metasurfaces, with particular focus on controlling the near-field response of sources close to the artificial surface. Although metasurfaces have attracted large attention for their ability to control and mold the wavefront of propagating waves, hence acting as flat lenses, they can also be used to modify the emission/radiation from near-field sources and control the generation and propagation of surface waves guided and confined along the surface. We discuss the analytical modeling of metasurfaces treated as homogenized impedance sheets and elucidate the application and limits of this approach for near-field sources. We devote a large part of the review article to anisotropic and hyperbolic metasurfaces, which enable some of the most exciting and extreme examples of anomalous surface-wave propagation on planarized artificial structures, with important implications for light focusing, confinement, and subwavelength imaging. We also connect these ideas with the emerging area of 2D materials and discuss how to implement hyperbolic metasurfaces with graphene and black phosphorus. We hope that this review article may provide the reader with relevant physical insights and useful analytical tools to study metasurfaces and their near-field interactions with localized sources and, more generally, offer an overview of this field and its ambitious goal of ideal light control on a surface.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3