Recent progress on applications of 2D material-decorated microfiber photonic devices in pulse shaping and all-optical signal processing

Author:

Liu Meng12ORCID,Wei Zhi-Wei12,Luo Ai-Ping12,Xu Wen-Cheng12,Luo Zhi-Chao12

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices and Guangzhou Key Laboratory for Special Fiber Photonic Devices and Applications , South China Normal University , Guangzhou 510006 , China

2. Guangdong Provincial Engineering Technology Research Center for Microstructured Functional Fibers and Devices , South China Normal University , Guangzhou 510006 , China

Abstract

Abstract Due to the exotic electronic and optical properties, two-dimensional (2D) materials, such as graphene, topological insulators, transition metal dichalcogenides, black phosphorus, MXenes, graphitic carbon nitride, metal-organic frameworks, and so on, have attracted enormous interest in the scientific communities dealing with electronics and photonics. Combing the 2D materials with the microfiber, the 2D material-decorated microfiber photonic devices could be assembled. They offer the advantages of a high nonlinear effect, all fiber structure, high damage threshold, and so on, which play important roles in fields of pulse shaping and all-optical signal processing. In this review, first, we introduce the fabrication methods of 2D material-decorated microfiber photonic devices. Then the pulse generation and the nonlinear soliton dynamics based on pulse shaping method in fiber lasers and all-optical signal processing based on 2D material-decorated microfiber photonic devices, such as optical modulator and wavelength converter, are summarized, respectively. Finally, the challenges and opportunities in the future development of 2D material-decorated microfiber photonic devices are given. It is believed that 2D material-decorated microfiber photonic devices will develop rapidly and open new opportunities in the related fields.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3