Affiliation:
1. KAIST , Daejeon , Republic of Korea
Abstract
Abstract
Proximity-field nanopatterning (PnP) have been used recently as a rapid, cost-effective, and large-scale fabrication method utilizing volumetric interference patterns generated by conformal phase masks. Despite the effectiveness of PnP processes, their design diversity has not been thoroughly explored. Here, we demonstrate that the possibility of generating any two-dimensional lattice with diverse motifs. By controlling the amplitude, phase, and polarization of each diffraction beam, we can implement all two-dimensional Bravais lattices in three-dimensional space. The results may provide diverse applications that require three-dimensional nanostructures from optical materials and structural materials to energy storage or conversion materials.
Funder
National Research Foundation of Korea
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献