Drift current-induced tunable near-field energy transfer between twist magnetic Weyl semimetals and graphene

Author:

Ma Qijun1,Chen Xue1,Xiong Qisen1,Jiang Leyong1ORCID,Xiang Yuanjiang2ORCID

Affiliation:

1. School of Physics and Electronics , Hunan Normal University , Changsha 410081 , China

2. School of Physics and Electronics , Hunan University , Changsha 410081 , China

Abstract

Abstract Both the nonreciprocal surface modes in Weyl semimetal (WSM) with a large anomalous Hall effect and the nonreciprocal photon occupation number on a graphene surface induced by the drift current provide a promising way to manipulate the nonreciprocal near-field energy transfer. Interestingly, the interactions between nonreciprocities are highly important for research in (thermal) photonics but remain challenging. In this study, we theoretically investigated the near-field radiative heat flux transfer between a graphene heterostructure supported by a magnetic WSM and a twist-Weyl semimetal (T-WSM). The nonreciprocal surface mode could be changed by the separation space between two Weyl nodes and the twist angle. Notably, we found that in the absence of a temperature difference between two parallel plates, nonequilibrium fluctuations caused by drift currents led to the transfer of near-field radiative heat flux. Furthermore, these nonreciprocal surface modes interacted with the nonreciprocal photon occupation number in graphene to achieve flexible manipulation of the near-field heat flux size and direction. Additionally, graphene adjustable flux in the case of a temperature difference between the two plates was also discussed. Our scheme can provide a reference for near-field heat flux regulation in nonequilibrium systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Changsha Natural Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3