Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect

Author:

Zhou Junhu123,Zhang Chenxi1,Liu Qirui1,You Jie4,Zheng Xin4,Cheng Xiang’ai123,Jiang Tian1ORCID

Affiliation:

1. College of Advanced Interdisciplinary Studies, National University of Defence Technology , Changsha, 410073 Hunan , China

2. State Key Laboratory of Pulsed Power Laser Technology , Changsha, 410073 Hunan , China

3. Hunan Provincial Key Laboratory of High Energy Laser Technology , Changsha, 410073 Hunan , China

4. National Innovation Institute of Defence Technology , Beijing 100010 , P.R. China

Abstract

Abstract Incorporating auxiliary all-optical modulation speeds as optional response modes into a single metamaterial is a promising research route towards advanced terahertz (THz) applications ranging from spectroscopy and sensing to communications. Particularly, a plethora of dynamically tunable optical functionalities are determined by the resonant light-matter interactions. Here, an electromagnetically induced transparency (EIT) resonator stacked with two traditional semiconductor films, namely silicon (Si) and germanium (Ge), is experimentally demonstrated. A giant switching feature of the EIT window with a peak at 0.65 THz occurs when the Si or Ge film is excited by ultrafast optical pulses, allowing for an optically tunable group delay of the THz wave packet. The recovery time for the slow and fast on-off-on switching cycles is 1.7 ns and 11 ps, respectively, which are mapped as the pump delay time of Si and Ge. Two optional response modes are integrated on the same device, where the modulation speed varies by three orders of magnitude, endowing the modulator more compact. This work provides new prospects for the design and construction of novel chip-scale THz devices based on EIT and their applications in areas of sophisticated optical buffering and active filtering.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3