Chirality-modulated photonic spin Hall effect in PT-symmetry

Author:

Liang Chengkang1ORCID,Liu Dongxue2,Liu Rao2,Deng Dongmei2,Wang Guanghui12

Affiliation:

1. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices , South China Normal University , Guangzhou , China

2. Guangzhou Key Laboratory for Special Fiber Photonic Devices , South China Normal University , Guangzhou , China

Abstract

Abstract The photonic spin Hall effect (PSHE), featured by a spin-dependent shift driven by its polarization handedness, is proposed to facilitate the applications in precision metrology and quantum information processing. Here, due to the magnetoelectric coupling of the chirality, the PSHE is accompanied with Goos–Hänchen and Imbert–Fedorov effects. Taking advantage of this superiority, the transverse shift (TS) and longitudinal shift (LS) can be applied simultaneously. Rearranging the PT-symmetric scattering matrix, the responsive PSHE near the exceptional points and their basic physical mechanisms are discussed in detail in the case of complex chirality κ. Re[κ] and Im[κ] regulated the rich (at multi-angle), gaint (reach upper limit) and tunable (magnitude and direction) TS and LS, respectively. Based on the chirality-modulated PSHE, the novel applications in binary code conversion and barcode encryption are proposed systematically. By incorporating the quantum weak measurement technology, our applications provide new mechanisms to realize optoelectronic communication.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3