Time-refraction optics with single cycle modulation

Author:

Lustig Eran1,Segal Ohad1,Saha Soham2,Bordo Eliyahu1,Chowdhury Sarah N.2,Sharabi Yonatan1,Fleischer Avner3,Boltasseva Alexandra2ORCID,Cohen Oren1,Shalaev Vladimir M.2,Segev Mordechai1ORCID

Affiliation:

1. Physics Department and Solid State Institute, Technion-Israel Institute of Technology , Haifa , Israel

2. School of Electrical and Computer Engineering, Birck Nanotechnology Center and Purdue Quantum Science and Engineering Institute, Purdue University , West Lafayette , IN , USA

3. School of Chemistry, Tel Aviv University , Tel Aviv , Israel

Abstract

Abstract We present an experimental study of optical time-refraction caused by time-interfaces as short as a single optical cycle. Specifically, we study the propagation of a probe pulse through a sample undergoing a large refractive index change induced by an intense modulator pulse. In these systems, increasing the refractive index abruptly leads to time-refraction where the spectrum of all the waves propagating in the medium is red-shifted, and subsequently blue-shifted when the refractive index relaxes back to its original value. We observe these phenomena in the single-cycle regime. Moreover, by shortening the temporal width of the modulator to ∼5–6 fs, we observe that the rise time of the red-shift associated with time-refraction is proportionally shorter. The experiments are carried out in transparent conducting oxides acting as epsilon-near-zero materials. These observations raise multiple questions on the fundamental physics occurring within such ultrashort time frames, and open the way for experimenting with photonic time-crystals, generated by periodic ultrafast changes to the refractive index, in the near future.

Funder

Deutsche Forschungsgemeinschaft

U.S. Department of Energy

Basic Energy Sciences

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3