Maximum electromagnetic local density of states via material structuring

Author:

Chao Pengning1ORCID,Kuate Defo Rodrick1ORCID,Molesky Sean2ORCID,Rodriguez Alejandro1

Affiliation:

1. Department of Electrical and Computer Engineering , Princeton University , Princeton , NJ 08544 , USA

2. Department of Engineering Physics , Polytechnique Montréal , Montréal , Québec H3T 1J4 , Canada

Abstract

Abstract The electromagnetic local density of states (LDOS) is crucial to many aspects of photonics engineering, from enhancing emission of photon sources to radiative heat transfer and photovoltaics. We present a framework for evaluating upper bounds on the LDOS in structured media that can handle arbitrary bandwidths and accounts for critical wave scattering effects. The bounds are solely determined by the bandwidth, material susceptibility, and device footprint, with no assumptions on geometry. We derive an analytical expression for the maximum LDOS consistent with the conservation of energy across the entire design domain, which upon benchmarking with topology-optimized structures is shown to be nearly tight for large devices. Novel scaling laws for maximum LDOS enhancement are found: the bounds saturate to a finite value with increasing susceptibility and scale as the quartic root of the bandwidth for semi-infinite structures made of lossy materials, with direct implications on material selection and design applications.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3