High-efficiency broadband light coupling between optical fibers and photonic integrated circuits

Author:

Son Gyeongho1,Han Seungjun1,Park Jongwoo1,Kwon Kyungmok2,Yu Kyoungsik1

Affiliation:

1. School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea

2. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA

Abstract

AbstractEfficient light energy transfer between optical waveguides has been a critical issue in various areas of photonics and optoelectronics. Especially, the light coupling between optical fibers and integrated waveguide structures provides essential input-output interfaces for photonic integrated circuits (PICs) and plays a crucial role in reliable optical signal transport for a number of applications, such as optical interconnects, optical switching, and integrated quantum optics. Significant efforts have been made to improve light coupling properties, including coupling efficiency, bandwidth, polarization dependence, alignment tolerance, as well as packing density. In this review article, we survey three major light coupling methods between optical fibers and integrated waveguides: end-fire coupling, diffraction grating-based coupling, and adiabatic coupling. Although these waveguide coupling methods are different in terms of their operating principles and physical implementations, they have gradually adopted various nanophotonic structures and techniques to improve the light coupling properties as our understanding to the behavior of light and nano-fabrication technology advances. We compare the pros and cons of each light coupling method and provide an overview of the recent developments in waveguide coupling between optical fibers and integrated photonic circuits.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3