Ultralow loss visible light metamaterials assembled by metaclusters

Author:

Zhao Jing1,Chen Huan2,Song Kun2,Xiang Liqin2,Zhao Qian3,Shang Chaohong2,Wang Xiaonong2,Shen Zhijie2,Wu Xianfeng2ORCID,Hu Yajie2,Zhao Xiaopeng2

Affiliation:

1. Medtronic plc , Boulder , CO 80301 , USA

2. Smart Materials Laboratory, Department of Applied Physics , Northwestern Polytechnical University , Xi’an 710129 , P. R. China

3. State Key Lab Tribology, Department of Mechanical Engineering , Tsinghua University , Beijing 100084 , P. R. China

Abstract

Abstract Optical metamaterials give birth to the control and regulation of light. However, because of strong energy dissipation and fabrication difficulty in meta-atoms, low-loss isotropic three dimensional negative index metamaterials (NIMs) in the visible spectrum has long been regarded as an extremely challenging. Here, we report an ultralow loss isotropic metamaterials for visible light and its inverse Doppler effect. The ball-thorn-shaped metaclusters with symmetrical structure consisting of the dielectric and its surface dispersed super-thin silver layer was proposed, the surface plasma resonance is formed by discrete silver layer with a thickness of two or three atomic layers. We invented a unique technique for preparing ultralow loss isotropic clusters and three-dimensional large block samples. The negative refractive index and the inverse Doppler effect of green and red light is measured by the prism method for the first time. The discrete super-thin silver layer produced by the photoreduction method greatly reduces the generation of loss and break through noble metal high energy losses of traditional optical frequency metamaterial, the metaclusters unfold bottleneck of the nano-assemble visible light metamaterials, opening a door for disorder assembling ultralow loss isotropic three-dimensional large block NIMs devices of arbitrary shape.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3