GAGA for nonreciprocal emitters: genetic algorithm gradient ascent optimization of compact magnetophotonic crystals

Author:

Gold Hannah1ORCID,Pajovic Simo1ORCID,Mukherjee Abhishek1ORCID,Boriskina Svetlana V.1ORCID

Affiliation:

1. Massachusetts Institute of Technology , Cambridge , USA

Abstract

Abstract Fundamental limits of thermal radiation are imposed by Kirchhoff’s law, which assumes the electromagnetic reciprocity of a material or material system. Thus, breaking reciprocity can enable breaking barriers in thermal efficiency engineering. In this work, we present a subwavelength, 1D photonic crystal composed of Weyl semimetal and dielectric layers, whose structure was optimized to maximize the nonreciprocity of infrared radiation absorptance in a planar and compact design. To engineer an ultra-compact absorber structure that does not require gratings or prisms to couple light, we used a genetic algorithm (GA) to maximize nonreciprocity in the design globally, followed by the application of the numerical gradient ascent (GAGA) algorithm as a local optimization to further enhance the design. We chose Weyl semimetals as active layers in our design as they possess strong, intrinsic nonreciprocity, and do not require an external magnetic field. The resulting GAGA-generated 1D magnetophotonic crystal offers high nonreciprocity (quantified by absorptance contrast) while maintaining an ultra-compact design with much fewer layers than prior work. We account for both s- and p-polarized absorptance spectra to create a final, eight-layer design suitable for thermal applications, which simultaneously minimizes the parasitic, reciprocal absorptance of s-polarized light.

Funder

ARO MURI

Publisher

Walter de Gruyter GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-state reconfigurable nonreciprocal thermal emitter driven by VO2 and Ge2Sb2Te5;International Journal of Heat and Mass Transfer;2024-11

2. Thermal photonics for sustainability;Nanophotonics;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3