Observation of in-plane exciton–polaritons in monolayer WSe2 driven by plasmonic nanofingers

Author:

Su Guangxu12,Gao Anyuan1,Peng Bo3,Hu Junzheng1,Zhang Yi4,Liu Fanxin12,Zhang Hao3,Zhan Peng1,Wu Wei5

Affiliation:

1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures and School of Physics , Nanjing University , Nanjing 210093 , China

2. Department of Applied Physics , Zhejiang University of Technology , Hangzhou 310023 , China

3. Department of Optical Science and Engineering , Fudan University , Shanghai 200433 , China

4. College of Energy and Electrical Engineering , Hohai University , Nanjing , 210098 , China

5. Department of Electrical Engineering-Electrophysics , University of Southern California , Los Angeles , CA 90089 , USA

Abstract

Abstract The transition metal dichalcogenides (TMDs) have drawn great research attention, motivated by the derived remarkable optoelectronic properties and the potentials for high-efficient excitonic devices. The plasmonic nanocavity, integrating deep-sub wavelength confinement of optical mode with dramatic localized field enhancement, provides a practical platform to manipulate light–matter interaction. In order to obtain strong exciton–plasmon coupling effects, it’s crucial to match the vibration direction of exciton to the available strong localized in-plane electric field. Herein, we demonstrate the coupling effect of in-plane exciton in monolayer tungsten diselenide (WSe2) to deterministic gap-plasmon field which is produced by nanometrically gapped collapsed nanofingers. The gap-plasmon field which is completely parallel to the in-plane excitons in WSe2 will drive a strong exciton–plasmon coupling at room temperature. More interestingly, it is experimentally observed that the luminescence of exciton–polariton cannot be influenced by the temperature in the range from 77 K to 300 K due to the presence of nanofingers. According to the theoretical analysis results, we attribute this finding to the dielectric screening effect arising from the extremely strong localized electric field of plasmonic nanofingers. This work proposes a feasible way to harness and manipulate the exciton of low-dimensional semiconductor, which might be potential for quantum optoelectronics.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Key R&D Program of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3