Nanostructured silica spin–orbit optics for modal vortex beam shaping

Author:

Coursault Delphine1ORCID,Brasselet Etienne1ORCID

Affiliation:

1. Univ. Bordeaux, CNRS, LOMA , UMR 5798 , Talence , France

Abstract

Abstract Modality is a generic concept of wave-optics at the basis of optical information and communications. One of the challenges of photonics technologies based on optical orbital angular momentum consists in the production of a modal content for both the azimuthal and radial degrees of freedom. This basically requires shaping the complex amplitude of an incident light beam, which is usually made up from adaptive spatial light modulators or bespoke devices. Here, we report on the experimental attempt of a recent theoretical proposal [Opt. Lett. 42, 1966 (2017)] toward the production of various optical vortex modes of the Laguerre–Gaussian type relying on the spin–orbit interaction of light. This is done in the visible domain from optical elements made out of silica glass. The idea consists in exploiting the combined effects of azimuthally-varying geometric phase with that of radially-varying propagation features. The proposed approach can be readily extended to any wavelength as well as to other families of optical modes, although some dynamic phase problems remain to be solved to make it a turnkey technology.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3