Graphene-coupled nanowire hybrid plasmonic gap mode–driven catalytic reaction revealed by surface-enhanced Raman scattering

Author:

Li Ze1,Pan Yan1,You Qingzhang1,Zhang Lisheng1,Zhang Duan2,Fang Yan1,Wang Peijie1ORCID

Affiliation:

1. Department of Physics, The Beijing Key Laboratory for Nano-Photonics and Nano-Structure , Capital Normal University , Beijing 100048 , China

2. Elementary Educational College, Capital Normal University , Beijing 100048 , China

Abstract

Abstract The single-layer graphene (SLG)-coupled nanowire (NW) hybrid plasmonic gap mode (PGM)-driven molecular catalytic reaction was investigated experimentally and theoretically. First, an SLG-coupled NW was constructed, then the surface-enhanced Raman scattering (SERS) effect of graphene in the hybrid plasmonic gap was studied via the normal and oblique incidence of excitation light. The SERS peaks of the D and G of graphene are more intensely enhanced by oblique incidence than by normal incidence. Furthermore, the catalytic reaction of the dimerization of the 4-nitrobenzenethiol molecule to p,p′-dimercaptoazobenzene molecule driven by PGM was carried out by SERS. It was demonstrated that the efficiency of the PGM-driven catalytic reaction is much higher for oblique incidence than that for normal incidence. The mechanism of the PGM-driven catalytic reaction was studied by a finite-difference time-domain numerical simulation. When the PGM is excited by oblique incidence with θ = 30°, the coupling between the NW and SLG/SiO2 substrate increases to the maximum value. This is clearly evidenced by the excitation of a vertical bonding dipolar plasmon mode under the dipole approximation. The theoretical and experimental results were consistent with each other. This research may open up a pathway toward controlling PGM-driven catalytic reactions through polarization changes in excitation laser incidence on single anisotropic nanostructures.

Funder

National Natural Science Foundation of China

Beijing Municipal Commission of Education

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3