Recent advances in oblique plane microscopy

Author:

Kim Jeongmin12ORCID

Affiliation:

1. Department of Applied Bioengineering, Graduate School of Convergence Science and Technology , Seoul National University , Seoul 08826 , Republic of Korea

2. Research Institute for Convergence Science , Seoul National University , Seoul 08826 , Republic of Korea

Abstract

Abstract Oblique plane microscopy (OPM) directly captures object information in a plane tilted from the focal plane of the objective lens without the need for slow z-stack acquisition. This unconventional widefield imaging approach is made possible by using a remote focusing principle that eliminates optical aberrations for object points beyond the focal plane. Together with oblique lightsheet illumination, OPM can make conventional lightsheet imaging fully compatible with standard biological specimens prepared on microscope slides. OPM is not only an excellent high-speed volumetric imaging platform by sweeping oblique lightsheet illumination without mechanically moving either the sample or objective lens in sample space, but also provides a solution for direct oblique plane imaging along any orientation of interest on the sample in a single shot. Since its first demonstration in 2008, OPM has continued to evolve into an advanced microscope platform for biological, medical, and materials science applications. In recent years, many technological advances have been made in OPM with the goal of super-resolution, fast volumetric imaging, and a large imaging field of view, etc. This review gives an overview of OPM’s working principle and imaging performance and introduces recent technical developments in OPM methods and applications. OPM has strong potential in a variety of research fields, including cellular and developmental biology, clinical diagnostics in histology and ophthalmology, flow cytometry, microfluidic devices, and soft materials.

Funder

National Research Foundation of Korea

Seoul National University

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3