Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators

Author:

Volkovskaya Irina1,Xu Lei23,Huang Lujun2,Smirnov Alexander I.1,Miroshnichenko Andrey E.2,Smirnova Daria14

Affiliation:

1. Institute of Applied Physics, Russian Academy of Science , Nizhny Novgorod 603950 , Russia

2. School of Engineering and Information Technology, University of New South Wales , Canberra , ACT 2600 , Australia

3. Advanced Optics and Photonics Laboratory , Department of Engineering , School of Science & Technology , Nottingham Trent University , Nottingham NG11 8NS , UK

4. Research School of Physics, The Australian National University , Canberra , ACT 2601 , Australia

Abstract

Abstract We put forward the multipolar model which captures the physics behind linear and nonlinear response driven by high-quality (high-Q) supercavity modes in subwavelength particles. We show that the formation of such trapped states associated with bound states in the continuum (quasi-BIC) can be understood through multipolar transformations of coupled leaky modes. The quasi-BIC state appears with increasing the order of the dominating multipole, where dipolar losses are completely suppressed. The efficient optical coupling to this state in the AlGaAs nanodisk is implemented via azimuthally polarized beam illumination matching its multipolar origin. We establish a one-to-one correspondence between the standard phenomenological non-Hermitian coupled-mode theory and multipolar models. The derived multipolar composition of the generated second-harmonic radiation from the AlGaAs nanodisk is then validated with full-wave numerical simulations. Back-action of the second-harmonic radiation onto the fundamental frequency is taken into account in the coupled nonlinear model with pump depletion. A hybrid metal-dielectric nanoantenna is proposed to augment the conversion efficiency up to tens of per cent due to increasing quality factors of the involved resonant states. Our findings delineate novel promising strategies in the design of functional elements for nonlinear nanophotonics applications.

Funder

Russian Foundation for Basic Research

Australian Research Council

Foundation for the Advancement of Theoretical Physics and Mathematics

University of New South Wales

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3