Terahertz plasmonic phase-jump manipulator for liquid sensing

Author:

Huang Yi1,Zhong Shuncong12,Shi Tingting1,Shen Yao-chun3,Cui Daxiang2

Affiliation:

1. Laboratory of Optics, Terahertz and Non-Destructive Testing, School of Mechanical Engineering and Automation , Fuzhou University , Fuzhou 350108 , PR China

2. Department of Bio-Nano Science and Engineering , Shanghai Jiaotong University , Shanghai 200030 , PR China

3. Department of Electrical Engineering and Electronics , University of Liverpool , L69 3BX , Liverpool , UK

Abstract

Abstract Terahertz (THz) plasmonic sensors has been regarded as exciting advances in biomedical engineering, due to their real-time, label-free, and ultrasensitive monitoring features. But actually, its widespread application remains impeded by poor modulation properties of operating frequency, single amplitude characterization method, and limited to low-loss substances. In the work, an ultraprecision THz sensor is achieved with direct phase readout capacity via combining steerable plasmonic resonance and attenuated total reflection. Interestingly, the oft-neglected THz phase were found to be ideal for plasmonic sensing characterization. Detailed investigation shows that the reflected THz phase exhibits two entirely different jump responses to coupling gap. Remarkably, the Q-factor of phase spectra for optimal coupling gaps, are generally higher than that of fixed coupling gaps, which falls within the range of 9.7–43.4 (4–26 times higher than its counterpart in amplitude measurements) in liquids sensing. The unique phase-jump responses on metasurfaces pave the way for novel THz sensing methods.

Funder

National Natural Science Foundation of China

State Key Laboratory of Mechanical System and Vibration

Shanghai Natural Science Fund

Fujian Provincial Science and Technology Project

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3