Manipulating chiral photon generation from plasmonic nanocavity-emitter hybrid systems: from weak to strong coupling

Author:

Yang Jian1,Hu Huatian23ORCID,Zhang Qingfeng4,Zu Shuai5,Chen Wen1,Xu Hongxing16

Affiliation:

1. State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science , East China Normal University , Shanghai 200241 , China

2. Hubei Key Laboratory of Optical Information and Pattern Recognition , Wuhan Institute of Technology , Wuhan 430205 , China

3. Center for Biomolecular Nanotechnologies , Istituto Italiano di Tecnologia , Via Barsanti 14, 73010 Arnesano (LE) , Italy

4. College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , China

5. Advanced Photonics Center, School of Electronic Science and Engineering , Southeast University , Nanjing 210096 , China

6. The Institute of Advanced Studies, School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education , Wuhan University , Wuhan 430072 , China

Abstract

Abstract By confining light into a deep subwavelength scale to match the characteristic dimension of quantum emitters, plasmonic nanocavities can effectively imprint the light emission with unique properties in terms of intensity, directionality, as well as polarization. In this vein, achiral quantum emitters can generate chiral photons through coupling with plasmonic nanocavities with either intrinsic or extrinsic chirality. As an important metric for the chiral-photon purity, the degree of circular polarization (DCP) is usually tuned by various scattered factors such as the nanocavity design, the emitter type, and the coupling strategy. The physical mechanisms of the chiral photon generation, especially when plasmons and emitters step into the strong coupling regime, are less explored. In this paper, we extended the coupled-oscillator and Jaynes–Cummings models to their chiral fashion to account for the above factors within a single theoretical framework and investigated the chiroptical properties of a plasmonic nanocavity-emitter hybrid system from weak to strong coupling. It was demonstrated that both the circular differential scattering and prominent scattering DCP rely on the intrinsic chirality generated by breaking the mirror symmetry with the emitter, and is thereby tunable by the coupling strength. However, the luminescence DCP (as high as 87 %) is closely related to the extrinsic chirality of the bare nanocavity and independent of the coupling strength. The results thus reveal two different physical mechanisms of generating chiral photons in scattering and luminescence. Our findings provide a theoretical guideline for designing chiral photon devices and contribute to the understanding of chiral plasmon-emitter interaction.

Funder

East China Normal University

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3