Temperature-stable black phosphorus field-effect transistors through effective phonon scattering suppression on atomic layer deposited aluminum nitride

Author:

Liu Wenjun1ORCID,Zheng Hemei1,Ang Kahwee2ORCID,Zhang Hao3,Liu Huan4,Han Jun4,Liu Weiguo4,Sun Qingqing1,Ding Shijin1,Zhang David Wei1

Affiliation:

1. State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University , Shanghai 200433 , China

2. Department of Electrical and Computer Engineering , National University of Singapore , Singapore 117583 , Singapore

3. Key Laboratory of Micro and Nano Photonic Structures, Department of Optical Science and Engineering , Fudan University , Shanghai 200433 , China

4. School of Optoelectronic Engineering , Xi’an Technological University , Xi’an 710021 , China

Abstract

Abstract Black phosphorus (BP) shows great potential in electronic and optoelectronic applications; however, maintaining the stable performance of BP devices over temperature is still challenging. Here, a novel BP field-effect transistor (FET) fabricated on the atomic layer deposited AlN/SiO2/Si substrate is demonstrated. Electrical measurement results show that BP FETs on the AlN substrate possess superior electrical performance compared with those fabricated on the conventional SiO2/Si substrate. It exhibits a large on-off current ratio of 5 × 108, a low subthreshold swing of <0.26 V/dec, and a high normalized field-effect carrier mobility of 1071 cm2 V−1 s−1 in the temperature range from 77 to 400 K. However, these stable electrical performances are not found in the BP FETs on SiO2/Si substrate when the temperature increases up to 400 K; instead, the electrical performance of BP FETs on the SiO2/Si substrate degrades drastically. Furthermore, to gain a physical understanding on the stable performance of BP FETs on the AlN substrate, low-frequency noise analysis was performed, and it revealed that the AlN film plays a significant role in suppressing the lattice scattering and charge trapping effects at high temperatures.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3