Tunable optical nonlinearity of indium tin oxide for optical switching in epsilon-near-zero region

Author:

Lau Kuen Yao1ORCID,Yang Yuting2,Zhao Di3,Liu Xiaofeng2,Qiu Jianrong1

Affiliation:

1. College of Optical Science and Engineering and State Key Lab of Modern Optical Instrumentation , Zhejiang University , 310027 , Hangzhou , China

2. School of Materials Science and Engineering , Zhejiang University , 310027 , Hangzhou , China

3. Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , 430074 , Wuhan , China

Abstract

Abstract The propagation of light in the epsilon-near-zero (ENZ) region of materials exhibits intriguing linear and nonlinear optical phenomenon that have been extensively exploited for a plethora of applications. Here, we show that the optical properties as well as the ENZ wavelength of magnetron-sputtered indium tin oxide (ITO) thin films could be judiciously engineered. The measurement of nonlinear optical properties reveals that the control of deposition conditions allows for the tuning of absorptive optical nonlinearity between saturable absorption and reverse saturable absorption. The ENZ wavelength for the ITO film is deduced as around 1553 nm. We obtain the highest third-order nonlinear absorption coefficient and imaginary part of third-order nonlinear susceptibility for the ITO thin film through Z-scan method as −50.56 cm/GW and ∼38 × 10−14 e.s.u. at 1050 nm, and −64.50 cm/GW and ∼45 × 10−14 e.s.u. at 1550 nm, respectively. We demonstrate further that the strong saturable absorption of the ITO thin film enables Q-switched pulse laser generation in ∼1050 and ∼1550 nm regions with tunable repetition rates and pulse energies. The present results suggest the great application potential of the ITO thin film in the field of nonlinear optical devices.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3