Cascaded domain engineering optical phased array for 2D beam steering

Author:

Li Jingwei1,Zheng Huaibin1ORCID,He Yuchen1,Liu Yanyan2,Wei Xiaoyong1,Xu Zhuo1

Affiliation:

1. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information Engineering , Xi’an Jiaotong University , Xi’an , 710049 , Shaanxi , China

2. National Key Laboratory of Electromagnetic Space Security , The 53rd Research Institute of China Electronics Technology Group Corporation , 300308 , Tianjin , China

Abstract

Abstract The current approach to 2D optical phased array (OPA) encounters challenges, such as the requirement for a highly tunable laser that is incompatible with certain 2D beam-steering applications or significant power consumption, large antenna spacing and complex wiring resulting from independent control of array elements. To address these challenges, we propose an OPA architecture based on cascaded periodically poled LiNbO3 sequences, a multi-layered domains engineered structure within the LiNbO3 electro-optic crystal, only two control electronics to program the 2D beam-steering trajectory with a range of approximately θ y = ±20° and θ z = ±16° through simulations. This structure enables the uniform distribution of phase differences between adjacent array elements (adjacent domains) upon beam exit from the crystal, ensuring optimal performance. The aim of this study is to develop a methodology that employs domain engineering techniques for designing high-performance phase-controlled devices with customized functional units and sequences in electro-optical crystals. Our research has implications for emerging optoelectronic applications, such as customizable optical interconnects and integrated LiDAR systems.

Funder

The National Key R&D Program of China

Shaanxi Key Research and Development Project

The National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3