Real-time terahertz meta-cryptography using polarization-multiplexed graphene-based computer-generated holograms

Author:

Rajabalipanah Hamid1ORCID,Rouhi Kasra1ORCID,Abdolali Ali1ORCID,Iqbal Shahid2,Zhang Lei2,Liu Shuo3

Affiliation:

1. Applied Electromagnetic Laboratory, School of Electrical Engineering , Iran University of Science & Technology , Tehran , Islamic Republic of Iran

2. School of Information Science and Engineering, State Key Laboratory of Millimetre Waves , Southeast University , Nanjing, 210096 , China

3. School of Physics and Astronomy , University of Birmingham , Birmingham, B15 2TT , United Kingdom

Abstract

Abstract As one of the cutting-edge technologies in advanced information science, wave-based cryptography is a prerequisite to enable a plethora of secure encrypting platforms which can be realized by smart multiplexing techniques together with suitable metasurface holograms (meta-holograms). Here, relying on the polarization multiplicity and re-writability of a computer-generated meta-hologram, a fully secure communication protocol is elaborately developed at the terahertz spectrum to host unique merits for exploring real-time metasurface-based cryptography (meta-cryptography) where highly restricted access of information is imposed. The proposed meta-cryptography exploits two dynamic near-field channels of a meta-hologram whose information can be instantaneously re-written without any polarization rotation and with high contrast and acceptable frequency bandwidth. The computer-generated meta-hologram is constructed based on the weighted Gerchberg–Saxton algorithm via a two-dimensional array of vertical graphene strips whose anisotropic reflection is merely determined by external biasing conditions. Several illustrative examples have been presented to demonstrate the perfect secrecy and polarization cross-talk of the proposed meta-cryptography. Numerical simulations corroborate well our theoretical predictions. As the first demonstration of dynamic THz meta-cryptography, the meta-hologram information channels can be deciphered into manifold customized messages which would be instrumental in data storage systems offering far higher data rates than electronic encryption can deliver.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3